Advanced Composite Materials

SLS BoosterFiberglass Properties
Fiberglass fabrics have many unique and outstanding properties, which provide design opportunities for the improvement of existing products and the development of new products.
JPS technicians, design engineers and technical representatives welcome the opportunity to combine their experience and knowledge of these unique properties to provide the superior products required by industry today.

Chemical Resistance
Inorganic fiberglass textile fibers will not rot, mildew or deteriorate. They resist most acids with the exception of hydrofluoric acid and hot phosphoric acid.

Dimensional Stability
The fiberglass yarns used in manufacturing glass fabrics will not stretch or shrink as a result of changes in atmospheric conditions. Nominal elongation at break is 3-4%. The average linear thermal expansion coefficient of bulk E glass is 5.4 x 10-6 cm/cm/oC.

Good Thermal Properties
Fiberglass fabrics have a low coefficient of thermal expansion and relatively high thermal conductivity. Glass fabrics will dissipate heat more rapidly than asbestos or organic fibers.

High Tensile Strength
Fiberglass yarn has a high strength-to-weight ratio. Pound for pound, fiberglass yarn is twice as strong as steel wire. The ability to design unidirectional or bidirectional strength into a fabric adds considerably to end-use product flexibility.

High Thermal Endurance
Inorganic glass fibers cannot burn and are basically unaffected by high baking and curing temperatures often encountered in industrial processing. Fiberglass will retain approximately 50% of its strength at 700oF and as much as 25% at 1000oF.

Low Moisture Absorption
Fiberglass yarn is made from noncellular fiber and, therefore, experiences extremely low moisture absorption.


Outstanding Electrical Insulation
High dielectric strength and relatively low dielectric constants, plus low water absorption and high temperature resistance, make fiberglas s fabrics outstanding for electrical insulating purposes.

Product Flexibility
The extremely fine filaments used in fiberglass yarns, the multitude of yarn sizes and configurations that these yarns can have, as well as weave types, and many special finishes, make fiberglass fabrics available for a broad range of industrial end uses.

Low Cost
Fiberglass fabrics do the job and compare favorably in cost with synthetic and natural fiber fabrics.

Selection
The selection of the proper fabric to meet the demands of your specific application require the combined knowledge of industry designers and engineers and JPS fiberglass design professionals. Prior to selecting a fabric for any applications, we recommend that you consult with a JPS technical or sales representative.


Quartz Properties

Physical and Mechanical
With a filament tensile strength of 870,000 PSI, (6.0GPa) Astroquartz® II quartz fiber has a higher strength-to-weight ratio than virtually all other high temperature materials.
Fibers are flexible and function well in applications subject to torsion and flexing. Astroquartz II fiber is transparent to ultraviolet radiation in the 2000A and upwards range. It does not form paramagnetic centers, nor does it capture neutrons in high-energy applications. Astroquartz II fiber is an excellent electrical insulator and retains these properties at high temperatures.

Chemical
Astroquartz® II and III fibers (99.99% pure fused silica) are chemically stable. They are water-insoluble and nonhygroscopic. Halogens, common acids in either liquid or gaseous form, have no affect on Astroquartz II and III products with the exception of hydrofluoric and hot phosphoric acids. Astroquartz II and III products should not be used in environments where strong concentrations of alkalis are present.

Thermal
Astroquartz® II and III quartz fiber can be used at temperatures much higher than either E glass or S® glass fiber, up to 1050 ° C. Above this temperature, slow devitrification or crystallization occurs with the loss of flexible mechanical properties. Repeatedly, varied temperatures and various impurities, especially alkalis, may promote devitrification at somewhat lower temperatures. Astroquartz II and III fiber softens at approximately 1300 ° C but never liquefies. Volatilization begins near 2000 ° C. Because of their very high melt viscosity; Astroquartz products are often used in ablative composites.

This fiber has a unique feature of nearly nil coefficient of thermal expansion in all directions (axial and radial). It is, therefore, an ideal reinforcement where dimensional stability under thermal cycling is critical, such as thermally controlled printed circuit boards for leadless ceramic chip carriers. This low coefficient factor also provides a great resistance to thermal shock, resulting in product suitable for applications involving abrupt thermal variations.

Electrical
The dielectric constant and the loss tangent factor are the best to date among all mineral fibers, and these outstanding performance characteristics are maintained at high frequencies and high temperatures. For these reasons, this fiber is often considered the best choice for radomes and high-speed printed circuit boards.

Selection
There are five basic design variables to consider when choosing Astroquartz fabrics including thickness, weight, construction, yarn size and finish. The selection of the proper fabric to meet the demands of your specific application requires the combined knowledge of industry designers and JPS design professionals. Prior to selecting a fabric for any applications, we recommend that you consult with a JPS technical or sales representative.


S-Glass Properties

Physical and Mechanical
With a filament tensile strength of 870,000 PSI, (6.06Pa) Astroquartz® II quartz fiber has a higher strength-to-weight ratio than virtually all other high temperature materials.
Fibers are flexible and function well in applications subject to torsion and flexing. Astroquartz II fiber is transparent to ultraviolet radiation in the 2000A and upwards range. It does not form paramagnetic centers, nor does it capture neutrons in high-energy applications. Astroquartz II fiber is an excellent electrical insulator and retains these properties at high temperatures.

Chemical
Astroquartz® II and III fibers (99.99% pure fused silica) are chemically stable. They are water-insoluble and nonhygroscopic. Halogens, common acids in either liquid or gaseous form, have no affect on Astroquartz II and III products with the exception of hydrofluoric and hot phosphoric acids. Astroquartz II and III products should not be used in environments where strong concentrations of alkalis are present.

Thermal
Astroquartz® II and III quartz fiber can be used at temperatures much higher than either E glass or S® glass fiber, up to 1050 ° C. Above this temperature, slow devitrification or crystallization occurs with the loss of flexible mechanical properties. Repeatedly, varied temperatures and various impurities, especially alkalis, may promote devitrification at somewhat lower temperatures. Astroquartz II and III fiber softens at approximately 1300 ° C but never liquefies. Volatilization begins near 2000 ° C. Because of their very high melt viscosity, Astroquartz products are often used in ablative composites.

This fiber has a unique feature of nearly nil coefficient of thermal expansion in all directions (axial and radial). It is, therefore, an ideal reinforcement where dimensional stability under thermal cycling is critical, such as thermally controlled printed circuit boards for leadless ceramic chip carriers. This low coefficient factor also provides a great resistance to thermal shock, resulting in product suitable for applications involving abrupt thermal variations.


Electrical
The dielectric constant and the loss tangent factor are the best to date among all mineral fibers, and these outstanding performance characteristics are maintained at high frequencies and high temperatures. For these reasons, this fiber is often considered the best choice for radomes and high-speed printed circuit boards.

Selection
There are five basic design variables to consider when choosing Astroquartz® fabrics including thickness, weight, construction, yarn size and finish. The selection of the proper fabric to meet the demands of your specific application requires the combined knowledge of industry designers and JPS design professionals. Prior to selecting a fabric for any applications, we recommend that you consult with a JPS technical or sales representative.